Towards Optimal Assembly Line Order Sequencing
with Reinforcement Learning: A Case Study

1% Saad Shafiq 2" Christoph Mayr-Dorn

Johannes Kepler University Johannes Kepler University
Linz, Austria Linz, Austria
saad.shafig@jku.at christoph.mayr-dorn @jku.at

Abstract—The new era of Industry 4.0 is leading towards self-
learning and adaptable production systems requiring efficient
and intelligent decision making. Achieving high production rate
in a short span of time, continuous improvement, and better
utilization of resources is crucial for such systems. This paper
discusses an approach to achieve production optimization by
finding optimal sequences of orders, which yield high throughput
using reinforcement learning. The feasibility of our approach is
evaluated by simulating a plant modelled on a higher level of
abstraction taken from a real assembly line. The applicability of
the proposed approach is demonstrated in the form of code uti-
lizing the simulation model. The obtained results show promising
accuracy of sequences against corresponding throughput during
the simulation process.

Index Terms—Order sequencing, Optimization, Reinforcement
learning

I. INTRODUCTION

Production sequencing, in general, deals with movement of
different order types (e.g., a specific vehicle configuration) in a
particular sequence. Each order type in an assembly line comes
with varying complexity in terms of tasks required to complete
the order. Knowing the constraints of limited resources, orders
must be sequenced in order to maximize productivity. An
arbitrary sequence of order types could potentially yield sub-
optimal throughput, thus creating a bottleneck in the process.
The manufacturing industry transitioning towards Industry 4.0
faces the challenge of implementing adaptive, self-learning,
and efficient systems [1], [2]. In order to maximize the
efficiency of these systems, new paradigms to facilitate product
scheduling and sequencing need to be explored.

The recent advancements in machine learning (ML) have
made its algorithms more powerful and efficient in order
to solve modern day problems. Some of its subsets among
many include deep learning (DL) and reinforcement learning
(RL). DL [3] has progressed significantly over recent years
and proven to show promising results in big industrial ar-
eas such as automotive [4], image recognition [5], and text
classification [6]. RL, on the other hand, is a huge shift in
the algorithmic paradigm and contains a range of existing
algorithms. RL has proven to be effective, specially in sim-
ulated environments but has yet to be explored in real world
scenarios [7]-[9]. RL models train on policies specifically
designed for tasks focusing on solving state space problems.

978-1-7281-8956-7/20/$31.00 ©2020 IEEE

3" Atif Mashkoor
SCCH GmbH &
Johannes Kepler University
Linz, Austria
atif.mashkoor@ {scch | jku}.at

4™ Alexander Egyed
Johannes Kepler University
Linz, Austria
alexander.egyed @jku.at

The policy adjudicates what action to select at a given state. A
reward is given after each action the model performs. In short,
the models aim to identify a policy, which lets them achieve
maximum expected outcome. The increasing popularity of RL
is due to the fact that it is capable of solving complex and
challenging sequential decision-oriented problems.

While the evaluation in current RL research papers is limited
to virtual actions made by the agent, in the real world, all
the scenarios (including worst) should be taken into account
in order to ensure safety [10]. Several studies already exist
showing the utilization of RL in order to achieve production
scheduling. Schneider et al. [11] introduced a value function
to generate optimal scheduling. However, there could exist
numerous variants of this formulated problem, especially,
considering the fact that these are NP-complete and cannot be
solved with algorithms completing in polynomial computation
time. Our approach provides an alternative solution to this
problem by reducing time considerably. Our approach applies
to the assembly context that have the following two main
constraints:

1) The order types in an assembly line have different com-

plexity in terms of varying task durations.

2) An assembly line has a fixed tact time.

The main contribution of this study is a novel approach
to provide optimal order type sequences, which could help
the production managers to make cost effective decisions
ahead of time. We believe that this study could be a starting
point for researchers to look at the factors, which influence
order sequencing, thus affecting the overall productivity of an
assembly line.

Our approach introduces RL in identifying the optimal
sequence given a set of orders in a production plant. In our
evaluation, the modeled production plant is a real assembly
line for manufacturing of vehicles, which comprises of multi-
ple stations, tasks associated with each worker, and a given set
of orders having specified features. Our approach consists of
the RL variant known as Q-Learning, which helps in identi-
fying the optimal sequences that will potentially yield high
throughput by exploring the plant simulation environment.
Results show that our approach is able to demonstrate optimal
sequences yielding desired throughput keeping in view the

982

Authorized licensed use limited to: Universitaet Linz. Downloaded on March 04,2021 at 11:16:04 UTC from IEEE Xplore. Restrictions apply.

constraints and complexity of the order types.

The rest of the paper is organized as follows: Section II
describes the motivation of this study. Section III presents the
background of RL in production optimization. Sections IV, V,
and VI describe the approach, algorithm, and implementation
of the proposed approach demonstrated through a case study,
respectively. The study evaluation and discussion is addressed
in Section VII and VIII, respectively. Threats to validity of
the study are described in Section IX. Section X discusses the
related work. The paper is concluded in Section XI.

II. PROBLEM STATEMENT (MOTIVATION)

There is a plethora of different possible sequences of order
types in an assembly line and small changes in a sequence
could effect the overall throughput. Hence, brute force try-
ing to find the optimum is not an efficient option. As the
simulation of an assembly line can be represented as discrete
events occurring at discrete times, RL aims to capture this by
constituting the Markov decision process (MDP) and deemed
to be befitting for this sort of problem, hence we have opted
for RL.

Although there are many studies focusing on the applica-
tions of RL in virtual environments, there exist only a few
studies that are addressing its applications in production and
manufacturing systems in terms of order sequencing. In the
real world, the execution of the entire scenario is an ongoing
continuous process and determining the sequence keeping in
mind the order constraints is crucial at the time of initial-
ization. We aim to leverage RL in order to assist production
managers to decide earlier which sequence of orders fits best
under the given circumstances. For this purpose, we have
formulated following research questions.

RQ-1: Does RL help in finding optimal sequences?
Rationale: This question refers to the applicability
of RL in the domain of order sequencing. It would
help explore the potential of using RL in detecting
optimal sequences in an assembly line. The optimality
in production optimization is highly subjective and
with the exact goal can not be guaranteed with ML
every time. However, the aim is to get as close to the
desired goal as possible. Therefore, to address this,
we have defined a minimum desired threshold for our
RL approach based on our observation of company’s
processes.

Is a machine learning-based model able to replace a
simulation?

Rationale: This question refers to the possibility of
adopting a machine learning-based model instead of
having a simulation. It would let us understand the
factors playing a vital role in differentiating an ML
model from the simulation environment. An ML model
would provide the possibility to substitute long running
simulations for less accurate but quicker responding
models to evaluate the effect of an RL agent’s deci-
sions.

RQ-2:

ITI. BACKGROUND OF RL IN PRODUCTION OPTIMIZATION

The applicability of RL in production optimization has been
extensively explored by industrial researchers but there are
no studies found that are addressing the order sequencing
problem. We have modelled a vehicle production assembly line
while addressing product and feature constrains in our plant
simulation. We have used SARSA algorithm - an improved
version of Q-learning - in our approach. It was proposed by
Sutton et al. [12]. As observed in [13], it comprises of a Q-
matrix that stores information regarding states (s;), actions
(a;) and reward (7). An action is applied on a state by the
agent yielding a reward. The value of Q(s;,a;) is updated
when a transition takes place from one state-action pair to the
succeeding one. As an equation, it is written as:

Q(5¢,at) «— Q(5¢, a¢)+a(rep 1 +7Q(St41, ar41) —Q(5¢,at))

where « denotes the rate of learning and <y represents the
discount factor.

The problem of sequence optimization can be deemed as
Markov decision process (MDP): The state of the system (the
simulation environment) s; can be described as current input
sequence of orders, an action a; (decision) performed by the
RL agent can be described as a changing in a single order type
in a sequence. The goal of the optimization is to develop a
policy function 7 that is able to minimize cost, i.e., achieving
positive reward R(s,a,t) over time. It can be mathematically
denoted as:

t'

min, = Z R(s,a,t)

t=1

where R, s, a, t' denotes the reward function, state of the
simulation environment, action taken by the RL agent, and
time taken to finish the last iteration, respectively.

IV. APPROACH

We have abstracted out the essential attributes of the produc-
tion line in order to model it in the plant simulation software’.
The attributes include maximum number of orders, their
complexity based on task duration and features constraints,
number of stations, and team of workers.

The steps involved in the approach are shown in Fig. 1 and
are as follows:

1. The documents underwent file parser where the docu-
ments are parsed, transformed to entities, and saved to the
database.

2. The information in database is then imported in the
plant simulation software and used to set the initial values
for the components of the simulation. The components of the
simulation model are addressed in Section VII-A.

3. The initial sequence of orders (state) is updated in the
Q-Matrix, then the simulation ran on that sequence of orders,
getting the throughput in return.

"https://www.dex.siemens.com/plm/tecnomatix/plant-simulation

983

Authorized licensed use limited to: Universitaet Linz. Downloaded on March 04,2021 at 11:16:04 UTC from IEEE Xplore. Restrictions apply.

4. The throughput is assessed and a positive reward of +1 is
assigned to the state with corresponding action if the desired
throughput is achieved otherwise a negative reward of -1 is
assigned to the state with the corresponding action. In our
context, the states represent the order places and the agent is
able to perform action by changing order at a single place in
a training step. The information regarding states, action and
reward is updated in Q-Matrix, which lets the agent select
actions that potentially yield positive reward.

4 I
el I:
i-!'?.sf?‘.".’ff \Tm

(: Application (cm

2. Import data In Plant
Simulation using Internal
Methods

3. Update values (state,
action, reward)

Run Simulation

if TP < desired

if TP »=|desi
4, Observe TP i >=|desired

""" 8ave sequence to DB u

Fig. 1: Architecture of the RL approach

V. ALGORITHM

The RL approach takes the initial sequence of orders as
the first initial action, which is determined by allocating order
types of varying complexity on multiple n places. Then, Q-
Matrix is initialized with random or specific number of states
and actions. The terms s, a, and 7P used below represent
state, action, and throughput, respectively. As an output, the
RL approach returns the set of optimal sequences of orders.
We have represented our RL approach as a pseudo code in
Algorithm 1, which is described in detail below.

e Line 1 - Initialize the Connection with plant simulation
and load the model

« Line 2 - Set the Iteration variable count to 0

« Line [3-6] - While Iteration is less than the specified max
number of iterations: increment the Iteration variable,
execute simulation with the initial action

e Line 7 - Set the Step variable count to 0

e Line [8-11] - While the obtained TP is less than the
threshold: increment the Step variable, update Q-Matrix
with current s, a, and reward. Execute simulation again
with new action

« Line 12 End while loop

« Line 13 - Save the current sequence in the database

« Line 14 - Update Q-Matrix with current s, a, and reward

e Line 15 - Execute simulation with new action selected
from Q-Matrix

« Line 16 End while loop.

Algorithm 1 The RL approach

Input
seq = {0O....0,}
Initial sequence of orders of length n
state = {P;....P,}
Define number of states
action = {A;....A,;}
Define number of actions
Output Set of Optimal Sequences
Begin
1: InitializeConnection(ComName)
Connect to Plant Simulation
2: Iteration = 0
3: while Iteration<Max do
4: Iteration++
5 Set RL Agent with initial values
Setting plant simulation model with initial order

sequence
6 Execute Simulation
7: Step =0
8: while TP<Threshold do
9: Step++
10: Update Q-Matrix with current state action reward
11: Execute Simulation with new action
12: end while
13: Save current sequence
14: Update Q-Matrix with current state action reward
15: Execute Simulation with new action
16: end while
End

VI. IMPLEMENTATION

In order to perform the experiment, we have treated the
plant simulation as our agent’s interacting environment. The
information regarding stations, team, task duration and feature
constraints are provided by the assembly company in the form
of XML documents, which were later employed in building the
plant simulation model. Furthermore, we have implemented
the algorithm of the approach as a C# application in order
to execute the training process of our RL model. The plant
simulation software provides a COM interface to interact with
the software using external applications. First, we developed
the code to configure the port and loaded the plant simulation
model from our application. Then, we set the initial values
of the state, i.e., initial sequence of orders, minimum/desired
throughput (goal to achieve), and number of iterations. A
reward function R is developed which continuously updates
the reward for a particular state-action pair at each step. Once
the agent reaches the goal, Q-matrix is updated. The agent

984

Authorized licensed use limited to: Universitaet Linz. Downloaded on March 04,2021 at 11:16:04 UTC from IEEE Xplore. Restrictions apply.

gets the next state, selects action (based on the Q value) to
perform, and continues the same process for the next iteration
until the specified limit of number of iterations is reached.
The implementation of the approach’s algorithm is graphically
represented in Fig. 2.

Start RL
Agent with
initial order

Connect
with Plant
Simulation

Execute
Simulation
Yes i No
No Save current Update Q-
sequence Matrix(State,
] Action, Reward)
Update Q- I
Matrix(State, - -
Action, Reward) Modify Action by
changing order at —
] one place
Modify Action by
changing order at
one place

Fig. 2: Workflow of the implemented algorithm

VII. EVALUATION

A. Study Design

Initially, a replica model of the assembly line was built in
the plant simulation software. Plant simulation is a generic
software provided by Siemens which is designed to model
and simulate production plant ranging from simple to complex
ones. We replicated the vehicle plant using the plant simulation
software covering the high level components of the plant. The
model consists of single assembly line with five stations. Each
station comprises of a set of tasks with feature constraints
corresponding to the incoming orders. An order type can be
considered as a move-able unit passing through each station
and worked on by the worker assigned to each station. An
order type identifies what product type (with respect to its
configuration) to produce. The number of these order types
is set to 10 with varying complexity with respect to the task
duration. The complexity (different task times) of an order
type can vary from simple (lower task times) to complex
(higher task times). This is modeled by setting a fixed tact

time (20 minutes) of the assembly line and keeping the task
times of order types varying within the range of tact time
but not exceeding it more than 2 minutes. For instance, a
sequence of length 10 consists of 3 order types (simple) with
task times below 20 minutes and 7 order types with task times
varying between 20-22 minutes in one line a day. Similar to
the fixed tact times, if an order exceeds the tact time at a given
station while the prior station has completed the processing of
its order, the exceeding time is recorded in a variable and
propagated to the task times of the incoming order at the
same station. An illustration of this scenario is demonstrated
in Fig. 3.

Each sequence of orders consists of N number order types
organized in a sequential manner.

sequence = O...0,

Each order needs to be entertained by single worker at a
time from the worker pool W. Once the worker completes
the given task in a specified duration, the order then moves
to the next allocated station. The time taken by each task
at a particular station is maintained in a time table. Each
station has a designated set of tasks along with its feature
constraints. Each order is processed at each station but the
time needed depends on the order type (recall that the type
reflects the configuration of the product and, thus determines
the detailed steps needed for mounting the respective parts).
Furthermore, the fixed tact time at each station is modelled
programmatically in a PlantSim Method component provided
within the plant simulation software. The total execution time
of the simulation model is 24 hours. The components of the
simulation model are illustrated in Fig. 4.

B. Input Data

The input data consists of multiple XML documents. The
documents are divided into two levels for a single order. A
level 0 document contains designated stations, tasks and their
duration, and the team assigned to stations. A level 1 document
contains feature constraints associated with these tasks at each
station. The information is then utilized to set the tasks times
and feature constraints associated with tasks for each order in
the plant simulation model.

We initially set the total number of orders types (n = 10).
The complexity level ranges from 1-10 with 10 being the most
complex. The arrangement of orders is represented as places
such as place 1 denotes the first position. There are total of
100 places in the simulation model. The order types are set
randomly at each place as the initial sequence.

C. Results

Once the model is trained, it starts yielding the sequences
that suffice our minimum threshold for throughput. In order to
select the minimum threshold, we first simulated the model on
randomly generated data of 1000 observations, which showed
throughput ranging from 18-46 inferring that the change in the
sequence of orders have a significant impact on the overall
throughput. Moreover, the uni-variate distribution of TP in

985

Authorized licensed use limited to: Universitaet Linz. Downloaded on March 04,2021 at 11:16:04 UTC from IEEE Xplore. Restrictions apply.

Station 1 Station 2 Station 3
Interval 1
Order 1 (Type: Simple)
Interval 2 8 (T ple)
=
Interval 3
Order 7 (Type: Simple)

—— — —

Tact time = 20 mins

Tact time = 20 mins

Tact time = 20 mins

Fig. 3: Order execution scenario

P 'ér m\w.\mhw_h-o 0000 maxWatngTime_52=0.0000 mexWatngTme_53=0.0000
- (4
rsE bun meari/aitrgTime S 1=0.0000 meanWatngTme_52-0.0000 meanWatnglme _$3=0.0000
ExceedingTime_S10,0000 ExceadngTime_52=0,0000 ExcredngTine_53=0.0000
u [} MaxProcTme_51=0.0000 MarPrecTime_52+0,0000 ManProcTime_53=0.0000

ProcTime_S1=0.0000 FrocTime_52=0.0000 ProcTime_S3=0.0000

Querflow_51=0.0000

S

Overflow_S2+0.0000 Overfiow_53=0.0000

@
31 ProcessingTime_52 ProcessngTme 53
0o 2%
oo L]
SourceaDuller CakufatewaltngTime_S2 CakulateWaitingTme_S3 "'

Calajate\aitngTime_S4

MaFrocTime_54=0.0000
ProcTme_S54=0.0000

Overfion_54=0.0000

mexttjatrgTime_54=0.0000 OveralWatingTime =0.0000

meanijarngTime_54=0.0000 OveraliExceedinglime =0.0000

Cxceednglme _54=0.0000 " LJ WMLUInterface
TasTimes_ o1
ChedExpCamp
e M o
hasRun=false
e yeestiethod
RunEmoMgr RL=false
IR = | . =
" m Nemltest
it
GetStaton "
FeaturesTestMethod
ProcessingTime_54 UndateTP. ' : M
o reacDats
festureCorstrant ”
| dscorrect
M M el
OveralWaitingTme QardomSeed

Fig. 4: Plant model

1000 observations is shown in Fig. 5 with average/mean of
29.86 and standard deviation of 4.52. We then decided to
have a mean TP (30) as minimum/desired threshold in our
experiment.

Evidently, the RL approach successfully identified the opti-
mal sequences (meeting the minimum/desired output) of order
types. The number of steps taken to reach to the goal in
each iteration of the training process and a sample generated
sequence is shown in Fig. 6. The RL agent took 66 steps
(actions) in order to reach the desired throughput in the
first iteration and 3 steps in the third iteration. The rest of
the iterations required only one step (action) to reach the
minimum/desired throughput implying high learning capabil-

ity of the model. After completing 10 iterations (specified
limit) the model has provided a sequence of orders yield-
ing desired throughput. The place in the sample generated
sequence represent the position of the order in an assembly
line while the alphanumeric characters corresponding to each
place represent the order types. As can be seen in Fig. 7,
there are 10 sequences yielding throughput (31) surpassing our
minimum/desired throughput (30) along with the frequency of
orders (expressed as Len_Order#) in each sequence.

VIII. DISCUSSION
A. Answers to RQs
RQ-1: Does RL help in finding optimal sequences?

986

Authorized licensed use limited to: Universitaet Linz. Downloaded on March 04,2021 at 11:16:04 UTC from IEEE Xplore. Restrictions apply.

10 -

0.8 4

0.6 1

04

0.2 4

Normalized occurences

0.0

T T T

20 30 40 50
Throughput (orders per day)

Fig. 5: TP uni-variate distribution (1000 observations)

Fig. 6: Sample generated sequence over 10 iterations

Results of our experiment show that our RL approach
worked well in exploring the simulation environment and
found sequences surpassed our threshold in a considerably
short span of time. Although, the approach might still needs to
be evaluated on very large and complex production lines, this
study can be a building block to further research on employing
RL in production optimization.

RQ-2: Is a machine-learning based model able to replace a
simulation?

In order to address this RQ, we aimed to leverage ML to
predict the overall throughput of the plant for a given sequence
of orders. We have generated the simulation data from the

plant simulation. The data represents the sequence of orders
being processed along with the throughput produced over the
course of one day. We ran the experiments with order types
of length N=100 with randomly generated sequences, which
ultimately provided the throughput against each corresponding
sequence. We then used this information to train our Keras
MLP (multi layer perceptron) regressor model”. The model is
used to forecast values based on the trained data.

We have trained the model on the dataset considering the
sequence of orders as input and throughput value as the
label (output) in the training process. The sequence of orders
(categorical) are converted and mapped to integer values 0,1
using one-hot encoding as it helps model to make better
predictions. We have considered this problem as a regressing
problem due to the fact that we want the model to forecast
predictions based on the given input sequence.

To evaluate the model, we have used MAE (mean absolute
error) as an evaluation metric. MAE denotes the amount of
errors in a set of predictions made by the model. Moreover, we
have used K-fold cross-validation to evaluate the performance
of the model. The K-fold cross-validation process is a mean
to evaluation model’s performance by splitting the dataset
into k folds of train and test sets. This process is adopted in
order to avoid over-fitting of the model. The MAE for 5 folds
turns out to be 8.73 (mean) and 0.28 (standard deviation).
After the selection of best model from the k-fold cross-
validation process, the model was then validated on a held-
out validation set. The validation results showed minimal
loss (10.24) inferring a moderate prediction capability of the
model. However, the model prediction duration is similar to
the plant simulation executing the actual sequence of orders
(products) but has an error rate of 8.73 when compared to
simulation results implying less accuracy as compared to the
simulation itself. Hence, evidently, the ML model used in this
study is not yet capable of replacing the simulation itself,
but the results may vary depending on the complexity of
the simulation model for the assembly line. A more complex
simulation model could require to load external data, which
could lead to large execution times thus creating a need to
replace it with a machine learning model with less prediction
time.

B. Practical Implications

Our approach could be of benefit to the plant managers
in making decisions concerning the order (product) sequence
or the dynamic generation of efficient sequences of orders
(products). Especially, where the desired throughput is of
high priority, this approach can help yield the most suit-
able sequences. Moreover, the plant simulation could help in
identifying the potential bottlenecks in the model providing
plant managers information to better orient their assembly
components.

Our RL approach still needs to be evaluated on large
and complex production plants where the number of states

https://keras.io

987

Authorized licensed use limited to: Universitaet Linz. Downloaded on March 04,2021 at 11:16:04 UTC from IEEE Xplore. Restrictions apply.

Id SequenceNumber Throughput Len_Order1 Len_Order2 Len_Order3 Len_Orderd Len_Order5 Len_Order6 Len_Order7 Len_Order8 Len_OrderS Len_Order10
1 {554 | 3 1 19 1 - 1 10 10 3 10 4
2 31 1 19 12 3 1 10 10 H 5 4
3 31 11 19 11 4 12 10 5 10 10 4
4 31 1 19 1 4 12 10 5 1) 4
3 31 1 20 1 4 12 10 5 10 5 4
6 31 1 20 1 4 12 10 5 10 5 4
7 31 12 20 1 4 12 H 5 10 5 4
8 31 12 19 1 4 12 10 5 10) 4
5 31 12 19 10 4 13 10 5 10 5 4
10 563 10 31 12 19 11 4 13 H 5 10 5 4
Fig. 7: Top 10 sequences

and actions can be quite large and could result in potential
state explosion problem. Due to the limitation of libraries
available in C# for deep RL and integration with our plant
simulation model, we were unable to use some of the powerful
deep RL techniques available such as Google’s DeepMind
Deep Q Network® (DQN). However, we believe, that modern
variants of RL such as Google’s DeepMind Deep Q Network
(DQN) could potentially address this problem and can provide
scalability.

IX. THREATS TO VALIDITY

A. External validity

To reduce the external validity threat, we have used a
significant sized real case study and a simulation environment
in order to train our reinforcement learning model. Although
the domain specific constraints of plant do limit this study
to be applicable in other domains, the approach with slight
tailoring can still be applicable in similar production plants.

B. Internal validity

The case study we have employed and the data generated
by the simulation is based on the documents provided by the
actual manufacturer of the plant, which eliminates the threat
of internal validity.

C. Construct validity

The experiment performed in this study is aimed at solving
a specific problem of sequence optimization for an assembly
line. The factor may vary depending on the type and com-
plexity of the assembly line. However, our approach tends to
generate optimal sequences that are applicable to all assembly
lines sharing similar environment as in our case study.

D. Conclusion validity

While the results are still debatable due to the limitation of
benchmark studies, we believe that this study could embark a
new direction in the area of industrial research in production
sequence optimization.

3https://deepmind.com/blog/article/deep-reinforcement-learning

X. RELATED WORK

Many studies have been conducted on production schedul-
ing, which address the optimization problem using RL such
as [11], [14]-]16]. The results of these studies have showed
great success of RL agents for maintenance scheduling of
machines in a transfer line. Zhang et al. [17] use RL in a
combination with neural network in order to optimize a job
shop scheduling, whereas a recent study [2] has employed new
variants of RL, such as Deep Q learning by Google, to solve
a complex job production and scheduling problem.

Bierwirth et al. [18] used a genetic algorithm (GA) to
address job shop scheduling problem. In job shop scheduling,
all jobs have certain release times, which ultimately determines
their arrival time at the shop floor. The release time is non-
deterministic and may require re-scheduling of jobs after
regular interval. Results show that the proposed approach
reduced the mean-flow time of jobs at a reasonable time.

Dulac-Amold et el. [10] discussed the challenges in apply-
ing RL in various domains such as multi dimensional state
spaces, constraints regarding safety and security [19], [20],
and generating real time inference in production systems.
The study also demonstrated the real world challenges using
an example environment and highlighted different ways to
address these challenges.

Wang et al. [21] investigated the capability of a RL agent
for the selection of rules for single machines. The results show
that the RL agent implemented using Q-learning - a variant
of RL - is able to select best suitable rules which ultimately
meets single machine objectives.

Akyol et al. [22] explored different studies proposing artifi-
cial neural network (ANN) based approaches aimed at solving
production scheduling problems. The study results reveal that
hybrid approaches - used in conjunction with one another -
were mostly aimed at solving the job shop scheduling problem,
which is considered to be one of the hardest optimization
problems experienced in real scheduling environments.

As slated in previous studies, these problems are considered
to be NP-complete, thus a generalized solution is difficult to
produce. Therefore, we have explored the problem specific
to our case study, which can be applied to similar order
sequencing problems. To the best of our knowledge, this study
is first of its kind that deals with order sequence optimization

988

Authorized licensed use limited to: Universitaet Linz. Downloaded on March 04,2021 at 11:16:04 UTC from IEEE Xplore. Restrictions apply.

using RL. This study further explores the applicability of the
approach in sequence optimization through interacting with
the production-grade plant simulation environment.

XI. CONCLUSION

In this study, we have presented an approach for sequence
optimization of production plants. We have introduced RL
to identify the best possible sequences of orders types in
a production line. We have demonstrated the applicability
of our approach by modeling a real vehicle manufacturing
assembly line. The results of the study show that the approach
was able to successfully identify the best possible sequences
of the product (ranging from simple to complex) in a short
span of time. Moreover, we also explored and compared
the proposed approach with a machine learning approach of
predicting the potential throughput for a given sequence of
orders types. However, the predictions made by the model
were with significantly low MAE. The time taken by the model
to generate predictions was similar to the plant simulation
software with MAE of 0 in ideal case. To summarize, our RL
approach is able to spot sequences yielding minimum specified
throughput in considerably less time.

In the future, we intend to put this approach into practice
to further evaluate our RL model. We also intend to explore
the impact of task switching on the productivity. We believe
that optimizing tasks using machine learning algorithms could
potentially enhance the performance and efficiency of a plant
or assembly line. We also plan to extend our approach using
an improved RL variant, such as Deep Q Networks, in order
to scale it to complex or large scale production plants.

ACKNOWLEDGMENT

This work is partially supported by the Linz Institute of
Technology (The LIT Artificial Intelligence Lab and the LIT
Secure and Correct Systems Lab) and the FFG, Contract
No. 854184. Pro?Future and SCCH are funded within the
Austrian COMET Program — Competence Centers for Ex-
cellent Technologies — under the auspices of the Austrian
Federal Ministry of Transport, Innovation and Technology, the
Austrian Federal Ministry for Digital and Economic Affairs
and of the Provinces of Upper Austria and Styria. COMET is
managed by the Austrian Research Promotion Agency FFG.

REFERENCES

[11 A. L. Orhean, F. Pop, and I. Raicu, “New scheduling approach using
reinforcement learning for heterogeneous distributed systems,” Journal
of Parallel and Distributed Computing, vol. 117, pp. 292-302, 2018.
B. Waschneck, A. Reichstaller, L. Belzner, T. Altenmiiller, T. Bauern-
hansl, A. Knapp, and A. Kyek, “Optimization of global production
scheduling with deep reinforcement learning,” Procedia CIRP, vol. 72,
pp- 1264-1269, 2018.

Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature,
vol. 521, no. 7553, pp. 436-444, may 2015. [Online]. Available:
http://www.nature.com/articles/nature 14539

F. Falcini, G. Lami, I. Science, A. M. Costanza, and F. C. Automobiles,
“Deep Learning in Automotive Software,” IEEE Software, 2017.

C. Chen, O. Li, C. Tao, A. J. Barnett, J. Su, and C. Rudin,
“This Looks Like That: Deep Learning for Interpretable Image
Recognition,” 33rd Conference on Neural Information Processing
Systems (NeurlPS 2019), no. NeurIPS, pp. 1-12, 2018. [Online].
Available: http://arxiv.org/abs/1806.10574

12]

(41

[5

[6]

[71

(8

[9

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

989

M. Choetkiertikul, H. K. Dam, T. Tran, T. Pham, A. Ghose, and
T. Menzies, “A Deep Learning Model for Estimating Story Points,”
IEEE Transactions on Software Engineering, vol. 45, no. 7, pp. 637-
656, 2019.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
S. Petersen, C. Beattie, A. Sadik, 1. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg, and D. Hassabis, “Human-level control through
deep reinforcement learning,” Nature, vol. 518.7540, pp. 529-533, 2015.
D. Hafner, T. Lillicrap, I. Fischer, R. Villegas, D. Ha, H. Lee, and
J. Davidson, “Learning Latent Dynamics for Planning from Pixels,” in
36th International Conference on Machine Learning, 2019.

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van
Den Driessche, J. Schrittwieser, 1. Antonoglou, V. Panneershelvam,
M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner,
I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and
D. Hassabis, “Mastering the game of Go with deep neural networks
and tree search,” Nature, vol. 529, no. 7587, pp. 484-489, 2016.
[Online]. Available: http://dx.doi.org/10.1038/nature 16961

G. Dulac-Arnold, D. Mankowitz, and T. Hester, “Challenges of
Real-World Reinforcement Learning,” in 36th International Conference
on Machine Learning, 2019. [Online]. Available: hittp://arxiv.org/abs/
1904.12901

J.G. S. J. A. B. A. W. Moore and Jeff G. Schneider; Justin A. Boyan;
Andrew W. Moore, “Value Function Based Production Scheduling,” in
ICML 98: Proceedings of the Fifteenth International Conference on
Machine Learning, 1998, pp. 522-530.

R. S. Sutton and A. G. Barto, An introduction to reinforcement learning,
2nd ed. London: Cambridge: MIT Press, 1998.

Y. H. Wang, T. H. S. Li, and C. J. Lin, “Backward Q-learning:
The combination of Sarsa algorithm and Q-learning,” Engineering
Applications of Artificial Intelligence, vol. 26, no. 9, pp. 2184-2193,
2013. [Online]. Available: http://dx.doi.org/10.1016/j.engappai.2013.06.
016

S. Mahadevan, N. Marchalleck, T. K. Das, and A. Gosavi, “Self-
improving factory simulation using continuous-time average-reward
reinforcement learning,” in Proc 14th International Conference on
Machine Learning, no. August, 1997, pp. 202-210. [Online]. Available:
http://www-anw.cs.umass.edu/rlr/domains.html

S. Mahadevan and G. Theocharous, “Optimizing Production Manufac-
turing using Reinforcement Learning,” Proceedings of the Eleventh In-
ternational Florida Artificial Intelligence Research Society Conference,
no. Gershwin 1994, pp. 372-377, 1998.

S. Riedmiller and M. Riedmiller, “A neural reinforcement learning
approach to learn local dispatching policies in production scheduling,”
1JCAI International Joint Conference on Artificial Intelligence, vol. 2,
pp. 764-769, 1999.

W. Zhang and T. G. Dietterich, “A Reinforcement Learning Approach to
Job-shop Scheduling,” 1995 International Joint Conference on Artificial
Intelligence, pp. 1114-1120, 1995.

C. Bierwirth and D. C. Mattfeld, “Production Scheduling and Reschedul-
ing with Genetic Algorithms,” Evolutionary Computation, vol. 7, no. 1,
pp. 1-17, 1999.

M. Biro, A. Mashkoor, J. Sametinger, and R. Seker, “Software Safety and
Security Risk Mitigation in Cyber-physical Systems,” IEEE Software,
vol. 35, no. 1, pp. 24-29, 2017.

A. Mashkoor, J. Sametinger, M. Biro, and A. Egyed, “Security- and
safety-critical cyber-physical systems,” Journal of Software: Evolution
and Process, vol. 32, no. 2, pp. 1-2, 2020.

Y. C. Wang and J. M. Usher, “Application of reinforcement learning
for agent-based production scheduling,” Engineering Applications of
Artificial Intelligence, vol. 18, no. 1, pp. 73-82, 2005.

D. E. Akyol and G. M. Bayhan, “A review on evolution of production
scheduling with neural networks,” Computers and Industrial Engineer-
ing, vol. 53, no. 1, pp. 95-122, 2007.

Authorized licensed use limited to: Universitaet Linz. Downloaded on March 04,2021 at 11:16:04 UTC from IEEE Xplore. Restrictions apply.

